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When the acoustic force inside a cavity balances the gravitational force on a particle
the result is known as acoustic levitation. Using the lattice Boltzmann equation method
we find the acoustic force acting on a rounded particle for two different single-
axis acoustic levitators in two dimensions, the first with plane waves, the second
with a rounded reflector that enhances the acoustic force. With no gravitational
force, a particle oscillates around a pressure node; in the presence of gravity the
oscillation is shifted a small vertical distance below the pressure node. This distance
increases linearly as the density ratio between the solid particle and fluid grows. For
both cavities, the particle oscillates with the frequency of the sound source and its
harmonics and in some cases there is a much smaller second dominant frequency.
When the momentum of the acoustic source changes, the oscillation around the
average vertical position can have both frequencies mentioned above. However, if this
quantity is large enough, the oscillations of the particle are aperiodic in the cavity
with a rounded reflector.

1. Introduction
Acoustic levitation occurs when the acoustic force inside a cavity balances the

gravitational force on a particle inside it. Acoustic levitation has been used to simulate
microgravity conditions, for sample positioning, for non-contact measurements of
liquid properties, and for fluid dynamics investigation of free drops (Chung & Trinh
1998; Hertz 1995; Trinh 1985; Brandt 2001).

The acoustic study of a particle in a sound wave was pioneered by King (1934), who
found the force on a solid sphere due to travelling or standing acoustic plane waves
and suggested the possibility of acoustic levitation in air. Gor’kov (1962) calculated
the acoustic potential for a sphere in an ideal fluid and a standing wave from which
the force over the sphere can be derived. Awatani (1955) was the first to report the
radiation force over a cylinder due to a travelling wave for an ideal fluid and Wu
et al. (1990) developed an expression for the case of a plane standing wave.

In this paper we show that the lattice Boltzmann method (LBM) (McNamara &
Zanetti 1988; Higuera, Succi & Benzi 1989; Chen & Doolen 1998; Benzi, Succi &
Vergassola 1992) can be used to study acoustic levitation. Since the stability of the
trajectory of the levitated particle is of great interest in applications (Barmatz 1982;
Rudnick & Barmatz 1990), we study the motion of a particle in two different two-
dimensional cavities, one with a plane reflector, the other with a rounded one. We
find that the stability of the trajectory depends on the geometry of the cavity, the
density of the particle and the momentum added by the acoustic source.
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The LBM can simulate a compressible fluid with moving boundary conditions. On
one hand, it is a compressible method (Alexander, Chen & Doolen 1992) capable
of simulating acoustic waves with no modifications (Buick, Greated & Campbell
1998; Buick et al. 2000). On the other, Ladd (1994a, b) set up the basis for the
study of the interaction between free macroscopic particles and the surrounding
fluid by implementing no-slip boundary conditions between them. The total force
exerted by the fluid on the particle can be calculated and the particle position
and angular position updated. Aidun, Lu & Ding (1998) modified this model to
improve the treatment of inertial effects and Filippova & Hanel (1997) developed
an approximation to consider circular boundaries. Lattice Boltzmann simulations of
the motion of a small cylinder in an ultrasound travelling field were carried out
by Cosgrove et al. (2004). Haydock (2005a) developed a theory for the acoustic force
on cylinders in an inviscid fluid and found a reasonable agreement with his LBM
simulations when the viscous effects are negligible (Haydock 2005b). Both used the
approach proposed by Ladd (1994a, b) for the no-slip boundary condition between
particle and fluid, which limits the inertial effects of the solid particle. In the numerical
simulations by Haydock (2005b) a solid particle was released inside a plane standing
wave in the absence of a body force. The particle travelled to a pressure node, where
the time-average acoustic force is zero.

In § 2 we briefly discuss the lattice Boltzmann method, mentioning the flows
with which our numerical scheme was validated. In § 3 we present non-dimensional
quantities and two different two-dimensional cavities for which numerical simulations
were performed: one with a flat reflector the other with a rounded reflector similar
to the one used by Xie & Wei (2001). Since our numerical simulations are two
dimensional, the particle is an infinite cylinder. In § 4 we present numerical simulations
of acoustic levitation in both cavities in the second resonant mode. In the absence
of an external gravitational field, the particle oscillates around the pressure node in
agreement with previous numerical simulations (Haydock 2005b). In the presence
of an external gravitational field, the particle oscillates a small distance below the
pressure node. We studied the behaviour of the particle when its density varies and
the momentum density added by the acoustic source is constant, and when the density
of the particle is fixed and the amplitude of the momentum density of the acoustic
force varies (keeping all other parameters fixed). For the flat cavity we find that the
particle always oscillates with the frequency of the acoustic source and its harmonics.
For the rounded cavity and for large values of the amplitude of the momentum
density added by the acoustic source, we find complex non-periodic trajectories.

2. The lattice Boltzmann equation method
In the D2Q9 model (see Qian, D’Humières & Lallemand 1992), space is discretized

in a two-dimensional square lattice and only nine velocities are allowed: c0 = (0, 0),
c1 = (1, 0), c2 = (0, 1), c3 = (−1, 0), c4 = (0, −1), c5 = (1, 1), c6 = (−1, 1), c7 =
(−1, −1), and c8 = (1, −1). The particle distribution functions fi(r, t), at site r , time
t and velocity ci , i = 0, . . . , 8, evolve according to the lattice Boltzmann equation

fi(r + ci , t + 1) − fi(r, t) = −1

τ

[
fi(r, t) − f

(eq)
i (r, t)

]
(2.1)

where τ is the dimensionles relaxation time and f
(eq)
i are the local equilibrium

distribution functions,

f
eq
i (r, t) = wiρ

[
1 + 3ci · u + 9

2
(ci · u)2 − 3

2
u2

]
. (2.2)
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In this equation wi = 4/9, 1/9, 1/36 for |ci | = 0, 1 and
√

2 respectively, and ρ and u
are the density and velocity defined by

ρ(r, t) =

8∑

i=0

fi(r, t), u(r, t) =
1

ρ

8∑

i=0

fi(r, t)ci . (2.3)

The viscosity ν is related to the relaxation time τ by ν = c2
s (τ −1/2), where cs = 1/

√
3

is the speed of sound, and p = ρc2
s where p is the pressure.

The right-hand side of (2.1) is a relaxation term that approximates Boltzmann’s
collision term (Bhatnagar, Gross & Krook 1954) and the first term on the left-hand
side takes into account streaming to neighbouring sites. It is convenient to consider
that during an iteration step, the fluid evolves by collisions (relaxations to local
equilibrium) followed by streaming. To simulate the acoustic source of the levitator,
the term 3wiP ciy is added to (2.1) at the sites of the lattice that coincide with the
acoustic source. It is not hard to show that in the collision step this term introduces
a change in momentum density �(ρu) in the y-direction of magnitude P . In what
follows we let P oscillate, P = Po cos ωot , where Po and ωo are the amplitude and
frequency of the momentum density applied at every site of the acoustic source.
Taking this change of momentum per unit time and unit length we obtain the
pressure density.

No-slip boundary conditions are simulated on the surface of the solid particle
and the total force and torque are evaluated (Aidun et al. 1998) to find how the
position of the particle and the angular velocity change. The walls of the cavity
are simulated using bounce-back boundary conditions reversing the direction of the
incoming distributions. To validate our numerical scheme we simulated several flows.
We found good agreement with the results of the sedimentation of a circular particle
in a narrow channel for different Reynolds numbers reported by Feng, Hu & Joseph
(1994). We measured the acoustic force on a rigid cylinder in a plane standing wave
and found good agreement with the results reported by Haydock (2005b), who had
compared his numerical simulations with theoretical results (Haydock 2005a) and
reported errors between 3 % and 146 % depending on the particle radius and the
acoustic boundary layer thickness. Since the theory is valid for an inviscid fluid, the
large errors reflect the fact that the numerical simulations fall outside the domain of
validity of the theory. Haydock used Ladd’s approach to treat the boundary between
the fluid and the particle based on bounce-back boundary conditions and we used
Aidun’s proposal based on half-way bounce-back boundary conditions which are
known to give better results.

To determine an appropriate lattice size, we compared our results with those of Poe
& Acrivos (1975) for the rotation of a particle in Couette flow. When the radius of
the particle is 9.5 lattice units, we found an error smaller than 3 %. On the other
hand, in acoustic levitation in a rounded three-dimensional cavity Xie & Wei (2001)
used a particle of 2 mm radius.

3. Dimensionless quantities and acoustic levitators
The dimensionless quantities for the acoustic levitation problem, denoted by an

asterisk, are

x∗ = kx, y∗ = ky, r∗ = kr, t∗ = t/T (3.1)
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Figure 1. (a) Single-axis acoustic levitator with a plane reflector. The vibrating source is
located at the top of the cavity; b∗ = 5.092. (b) Single-axis acoustic levitator with a rounded
reflector with b∗ = 5.092, B∗ = 2b∗, R∗ = 12.244, h∗

b = 0.1377, W ∗ = 30, and h∗
a = 0.01028.

For both cavities H ∗ is adjusted to the second resonant mode, τ = 0.6, and ρf = 0.6.

where x, y, r and t are the horizontal and vertical position, the radius of the particle,
and time respectively, T is the period and k = 2π/λ is the wavenumber with λ the
wavelength of the standing wave. The dimensionless momentum density P ∗ is

P ∗ =
PkT

πr2ρf

, (3.2)

where ρf is the fluid density.
Numerical simulations were carried out in two different single-axis acoustic cavities

shown schematically in figure 1(a, b). The first is formed by a plane vibrating source
at the top and a plane reflector at the bottom with periodic boundary conditions in
the horizontal direction. The second cavity has the same shape and parameters as the
one presented by Xie & Wei (2001) but in two dimensions. The vertical walls are far
from the acoustic source. Since b∗ has the same value in both cavities, the acoustic
source inputs are equal.

4. Numerical simulations
The first step is to establish ωo, the frequency of a standing wave in the second

resonant mode in both cavities without a particle. We generate a standing wave by
adding momentum at the sites of the vibrating source periodically, P ∗ = P ∗

o cos ωot ,
as mentioned in § 2. The initial conditions for the numerical simulations are different
for each cavity. For the flat cavity, we start with a given velocity and pressure profile,
knowing that in a standing wave the phase differs by π/2 and that v1 = p1/ρf cs with
v1 and p1 the velocity and pressure amplitudes (p1 ∝ Po). Then ωo = 6πcs/4H where
H is the height of the cavity (Strutt & Rayleigh 1945). For the rounded cavity, we
start with the fluid at rest and add momentum periodically to the acoustic source of
the levitator. After approximately 300 periods a standing wave is formed inside the
cavity and we measure the maximum velocity amplitude. In the resonant modes the
velocity amplitude is a maximum and this gives us the value of ωo for the second
resonant mode.

In the absence of an external gravitational field, a particle will move to a pressure
node. In the presence of gravity, the particle’s stationary vertical position is shifted
to where the time-average acoustic force on the particle is equal to its weight. In
figure 2(a, b) we show the vertical positions of several particles for both cavities.
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Figure 2. Vertical positions of particles with r∗ = 0.25 and twice the density of the fluid in
the presence of gravity for (a) the flat cavity and (b) the rounded one. The horizontal lines
represent the vertical position of the pressure node. The oscillations in the flat cavity are barely
visible. For both cavities P ∗

o = 1.6 × 10−3. Lattices of 163 × 201 and 901 × 251 nodes were
used for the flat and rounded cavity respectively.

The horizontal lines indicate the position of the pressure nodes. The displacement of
the stationary position from the pressure node is larger in the flat cavity than in the
rounded one, where it is barely noticeable. However, we find larger oscillations in
the latter.

In the following, we report the results of numerical simulations in the second
resonant mode with the particle initially near the pressure node closest to the reflector.
In figure 3(a, b) we show y∗

s , the time average of the vertical position of the particle
after a long transient, as the ratio of the density of the particle ρp and the fluid
ρf varies for a fixed value of P ∗

o . We also show the standard deviation, which is
a measure of the amplitude of oscillation of the particle around y∗

s . There is a
near-linear behaviour in both cavities, which implies that the mean acoustic force is
proportional to the deviation of y∗

s from the pressure node. A detailed analysis of all
trajectories indicates the presence of a small-amplitude oscillation with frequency ωo

and its harmonics. The large values of the standard deviation of y∗
s in the rounded

cavity for 50 ∼< ρp/ρf ∼< 250 are the consequence of large-amplitude oscillations of
frequency ω1 and its harmonics with ω1 � ωo.

In figure 4(a, b) we show y∗
s with its standard deviation as P ∗

o , the amplitude
of the applied external momentum varies, keeping ρp/ρf fixed. As P ∗

o grows, y∗
s

approaches the pressure node in the flat cavity. For the rounded cavity, the situation
is more complex, since the pressure node’s position depends on P ∗

o as we also show
in figure 4(b). To explain the results found for the rounded cavity we show the
vertical positions for three values of P ∗

o in figure 5. In figures 5(a) and 5(b) there is a
small-amplitude oscillation with frequency ωo and its harmonics, while in figure 5(c)
this oscillation has been filtered out. In figure 5(a), that corresponds to the smallest
value of P ∗

o in figure 4(b), the power spectrum shows a second frequency ω1, much
smaller than ωo, together with its harmonics. These low-frequency oscillations are
present in all the numerical simulations reported in figure 4(b) except the one for
the largest value of P ∗

o . In figure 5(b), for P ∗
o where the standard deviation of y∗

s
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Figure 3. Vertical stationary position y∗
s with its standard deviation as ρp/ρf varies for

(a) the flat and (b) the rounded cavity. In the numerical simulations P ∗ = 0.01 for the flat
cavity and P ∗ = 0.0019 for the rounded one. The slopes of the linear fit are (a) −0.00168 and
(b) −0.00227.

1.20

1.32

1.44

1.56

0.004 0.006 0.008 0.010 0.012 0.014

y*
s

y*
s

(a)

1.05

1.40

1.75

2.10

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
P*

o

(b)

Figure 4. Vertical stationary position y∗
s with its standard deviation as P ∗

o varies with
ρp/ρf = 50 for the (a) flat and (b) rounded cavities. In the flat cavity, the pressure node
is at y∗ = 1.6. The curve in (b) shows the vertical position of the pressure node.

in figure 4(b) begins to grow, and 5(c), for the last value of P ∗
o in that figure the

oscillations are more complex. The origin of this change is the horizontal motion of
the particle, which was not present before, due to a doubling of the pressure node
nearest the rounded reflector for P ∗

o > P ∗
oc

with P ∗
oc

between 0.0032 and 0.0038 as we
show in figure 6. For P ∗

o > P ∗
oc
, except for the last value of P ∗

o shown in figure 4(b),
the particle oscillates horizontally with frequencies ωo and its harmonics and a much
smaller frequency ω2 and its harmonics.

The particle oscillation for the largest value of P ∗
o of figure 4(b) is qualitatively

different from the others. In figure 5(c) and 5(d) we show the vertical and horizontal
motion of the particle. Large-amplitude horizontal oscillations correspond to
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Figure 5. Vertical positions for (a) P ∗
o = 6.0 × 10−4 and (b) P ∗

o = 4.5 × 10−3. Vertical (c)
and horizontal (d) positions of a particle with P ∗

o = 6.45 × 10−3. In all three simulations,
ρp/ρf = 50 for the rounded cavity.
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Figure 6. Horizontal position of the pressure node with ρp/ρf = 50. We find P ∗
oc

between
0.0032 and 0.0038.

large-amplitude vertical oscillations. The particle oscillates horizontally near one
of the pressure nodes, then it oscillates around both of them until it is attracted
by the other one. This behaviour continues irregularly for a long time, which is not
shown in the figure, and eventually (t∗ > 16 000) the particle oscillates between the
two pressure nodes. Evidence of the aperiodic vertical oscillations can be found in the
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Figure 7. Power spectra of the vertical motion shown in figure 5(a) (continuous curve) with
ωo = 0.019126 and ω1 = 0.0002913 and (dashed curve) in figure 5(c) with the same value of
ωo.

power spectrum shown in figure 7 where we cannot identify a frequency ω1, in contrast
to the power spectrum for the vertical motion of the particle shown in figure 5(a) for
which ω1 is clearly distinguishable. From the time series of the horizontal or vertical
position of the particle we evaluated the largest Lyapunov exponent and found a
value much too small to conclude that the motion of the particle is chaotic (Hegger,
Kantz & Schreiber 1999; Kantz & Schreiber 2004). It is possible that there is a chaotic
transient (Strogatz 1994) or a complex behaviour even if the maximum Lyapunov
exponent is zero.

5. Concluding remarks
The lattice Boltzmann method can describe the interaction of a compressible

fluid with a solid moving particle in acoustic levitation. We performed numerical
simulations for varying ratio of densities of the particle and fluid and a fixed value of
the momentum density added by the acoustic source for flat and rounded cavities. The
average height at which the particle oscillates varies linearly with the density ratio for
both cavities. The particle oscillates with the frequency of the acoustic source and its
harmonics and in some cases with a much smaller frequency. When the momentum
density of the acoustic source is varied for a fixed value of the density ratio, the
particle in the flat cavity oscillates around a vertical position that approaches the
pressure node as the momentum increases, again with the frequency of the acoustic
source and its harmonics and in some cases with a smaller frequency. For the rounded
cavity, the appearance of two pressure nodes destabilizes the oscillation which may
become aperiodic due to the horizontal motion of the particle around the two pressure
nodes. We speculate that the particle is the source of an asymmetric horizontal force
that gives rise to such an aperiodic behaviour. We could not find a chaotic motion
but we did not explore the whole parameter space.

Altough we have focused on the motion of the particle, we could also focus on the
fluid. For example, we measured the streaming velocity, defined as the time-averaged
velocity at a site, and our results agree with those of Haydock (2005a), who found
that the maximum streaming velocity is almost 2 % of the maximum velocity inside
the cavity.

The numerical simulations show that the rounded cavity is more efficient in the
sense that levitation occurs with a smaller value of the momentum density added
by the acoustic force than in the square cavity, as is expected. But the price for this
efficiency is larger oscillations of the particle that lead to a complex non-periodic
motion, caused by the doubling of the pressure node.

Using the LBM, simulations in complicated geometries can be carried out. These
may help to determine the shift in the resonant frequency due to the presence of
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a particle and optimize the geometry of the reflector for a single- or multiple-axis
levitator. Another advantage of the method is that it can be directly extended to three
dimensions.
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